Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phytochem Anal ; 2024 Mar 23.
Article de Anglais | MEDLINE | ID: mdl-38520203

RÉSUMÉ

INTRODUCTION: Olive oil, derived from the olive tree (Olea europaea L.), is used in cooking, cosmetics, and soap production. Due to its high value, some producers adulterate olive oil with cheaper edible oils or fraudulently mislabel oils as olive to increase profitability. Adulterated products can cause allergic reactions in sensitive individuals and can lack compounds which contribute to the perceived health benefits of olive oil, and its corresponding premium price. OBJECTIVE: There is a need for robust methods to rapidly authenticate olive oils. By utilising machine learning models trained on the nuclear magnetic resonance (NMR) spectra of known olive oil and edible oils, samples can be classified as olive and authenticated. While high-field NMRs are commonly used for their superior resolution and sensitivity, they are generally prohibitively expensive to purchase and operate for routine screening purposes. Low-field benchtop NMR presents an affordable alternative. METHODS: We compared the predictive performance of partial least squares discrimination analysis (PLS-DA) models trained on low-field 60 MHz benchtop proton (1H) NMR and high-field 400 MHz 1H NMR spectra. The data were acquired from a sample set consisting of 49 extra virgin olive oils (EVOOs) and 45 other edible oils. RESULTS: We demonstrate that PLS-DA models trained on low-field NMR spectra are highly predictive when classifying EVOOs from other oils and perform comparably to those trained on high-field spectra. We demonstrated that variance was primarily driven by regions of the spectra arising from olefinic protons and ester protons from unsaturated fatty acids in models derived from data at both field strengths.

2.
Metabolomics ; 20(2): 22, 2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38347235

RÉSUMÉ

INTRODUCTION: For many samples studied by GC-based metabolomics applications, extensive sample preparation involving extraction followed by a two-step derivatization procedure of methoximation and trimethylsilylation (TMS) is typically required to expand the metabolome coverage. Performing normalization is critical to correct for variations present in samples and any biases added during the sample preparation steps and analytical runs. Addressing the totality of variations with an adequate normalization method increases the reliability of the downstream data analysis and interpretation of the results. OBJECTIVES: Normalizing to sample mass is one of the most commonly employed strategies, while the total peak area (TPA) as a normalization factor is also frequently used as a post-acquisition technique. Here, we present a new normalization approach, total derivatized peak area (TDPA), where data are normalized to the intensity of all derivatized compounds. TDPA relies on the benefits of silylation as a universal derivatization method for GC-based metabolomics studies. METHODS: Two sample classes consisting of systematically incremented sample mass were simulated, with the only difference between the groups being the added amino acid concentrations. The samples were TMS derivatized and analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). The performance of five normalization strategies (no normalization, normalized to sample mass, TPA, total useful peak area (TUPA), and TDPA) were evaluated on the acquired data. RESULTS: Of the five normalization techniques compared, TUPA and TDPA were the most effective. On PCA score space, they offered a clear separation between the two classes. CONCLUSION: TUPA and TDPA carry different strengths: TUPA requires peak alignment across all samples, which depends upon the completion of the study, while TDPA is free from the requirement of alignment. The findings of the study would enhance the convenient and effective use of data normalization strategies and contribute to overcoming the data normalization challenges that currently exist in the metabolomics community.


Sujet(s)
Métabolome , Métabolomique , Métabolomique/méthodes , Reproductibilité des résultats , Chromatographie gazeuse-spectrométrie de masse/méthodes
3.
Food Res Int ; 173(Pt 2): 113467, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37803789

RÉSUMÉ

Kefir is fermented traditionally with kefir grains, but commercial kefir production often relies on fermentation with planktonic cultures. Kefir has been associated with many health benefits, however, the utilization of kefir grains to facilitate large industrial production of kefir is challenging and makes to difficult to ensure consistent product quality and consistency. Notably, the microbial composition of kefir fermentations has been shown to impact kefir associated health benefits. This study aimed to compare volatile compounds, organic acids, and sugar composition of kefir produced through a traditional grain fermentation and through a reconstituted kefir consortium fermentation. Additionally, the impact of two key microbial communities on metabolite production in kefir was assessed using two modified versions of the consortium, with either yeasts or lactobacilli removed. We hypothesized that the complete kefir consortium would closely resemble traditional kefir, while the consortia without yeasts or lactobacilli would differ significantly from both traditional kefir and the complete consortium fermentation. Kefir fermentations were examined after 12 and 18 h using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) to identify volatile compounds and high performance liquid chromatography (HPLC) to identify organic acid and sugar composition. The traditional kefir differed significantly from the kefir consortium fermentation with the traditional kefir having 15-20 log2(fold change) higher levels of esters and the consortium fermented kefir having between 1 and 3 log2(fold change) higher organic acids including lactate and acetate. The use of a version of kefir consortium that lacked lactobacilli resulted in between 2 and 20 log2(fold change) lower levels of organic acids, ethanol, and butanoic acid ethyl ester, while the absence of yeast from the consortium resulted in minimal change. In summary, the kefir consortium fermentation is significantly different from traditional grain fermented kefir with respect to the profile of metabolites present, and seems to be driven by lactobacilli, as evidenced by the significant decrease in multiple metabolites when the lactobacilli were removed from the fermentation and minimal differences observed upon the removal of yeast.


Sujet(s)
Kéfir , Saccharomyces cerevisiae , Lactobacillus/métabolisme , Éthanol/métabolisme , Sucres/métabolisme
4.
Metabolomics ; 19(8): 74, 2023 08 11.
Article de Anglais | MEDLINE | ID: mdl-37566260

RÉSUMÉ

INTRODUCTION: Fecal samples are highly complex and heterogeneous, containing materials at various stages of digestion. The heterogeneity and complexity of feces make stool metabolomics inherently challenging. The level of homogenization influences the outcome of the study, affecting the metabolite profiles and reproducibility; however, there is no consensus on how fecal samples should be prepared to overcome the topographical discrepancy and obtain data representative of the stool as a whole. OBJECTIVES: Various combinations of homogenization conditions were compared to investigate the effects of bead size, addition of solvents and the differences between wet-frozen and lyophilized feces. METHODS: The homogenization parameters were systematically altered to evaluate the solvent usage, bead size, and whether lyophilization is required in homogenization. The metabolic coverage and reproducibility were compared among the different conditions. RESULTS: The current work revealed that a combination of mechanical and chemical lysis obtained by bead-beating with a mixture of big and small sizes of beads in an organic solvent is an effective way to homogenize fecal samples with adequate reproducibility and metabolic coverage. Lyophilization is required when bead-beating is not available. CONCLUSIONS: A comprehensive and systematical evaluation of various fecal matter homogenization conditions provides a profound understanding for the effects of different homogenization methods. Our findings would be beneficial to assist with standardization of fecal sample homogenization protocol.


Sujet(s)
Métabolome , Métabolomique , Métabolomique/méthodes , Reproductibilité des résultats , Fèces , Solvants
5.
Metabolites ; 13(7)2023 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-37512535

RÉSUMÉ

The metabolic profiles of human feces are influenced by various genetic and environmental factors, which makes feces an attractive biosample for numerous applications, including the early detection of gut diseases. However, feces is complex, heterogeneous, and dynamic with a significant live bacterial biomass. With such challenges, stool metabolomics has been understudied compared to other biospecimens, and there is a current lack of consensus on methods to collect, prepare, and analyze feces. One of the critical steps required to accelerate the field is having a metabolomics stool reference material available. Fecal samples are generally presented in two major forms: fecal water and lyophilized feces. In this study, two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) was used as an analytical platform to characterize pooled human feces, provided by the National Institute of Standards and Technology (NIST) as Research-Grade Test Materials. The collected fecal samples were derived from eight healthy individuals with two different diets: vegans and omnivores, matched by age, sex, and body mass index (BMI), and stored as fecal water and lyophilized feces. Various data analysis strategies were presented to determine the differences in the fecal metabolomic profiles. The results indicate that the sample storage condition has a major influence on the metabolic profiles of feces such that the impact from storage surpasses the metabolic differences from the diet types. The findings of the current study would contribute towards the development of a stool reference material.

6.
Anal Chim Acta ; 1249: 340909, 2023 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-36868765

RÉSUMÉ

Analysis of GC×GC-TOFMS data for large numbers of poorly-resolved peaks, and for large numbers of samples remains an enduring problem that hinders the widespread application of the technique. For multiple samples, GC×GC-TOFMS data for specific chromatographic regions manifests as a 4th order tensor of I mass spectral acquisitions, J mass channels, K modulations, and L samples. Chromatographic drift is common along both the first-dimension (modulations), and along the second-dimension (mass spectral acquisitions), while drift along the mass channel is for all practical purposes nonexistent. A number of solutions to handling GC×GC-TOFMS data have been proposed: these involve reshaping the data to make it amenable to either 2nd order decomposition techniques based on Multivariate Curve Resolution (MCR), or 3rd order decomposition techniques such as Parallel Factor Analysis 2 (PARAFAC2). PARAFAC2 has been utilised to model chromatographic drift along one mode, which has enabled its use for robust decomposition of multiple GC-MS experiments. Although extensible, it is not straightforward to implement a PARAFAC2 model that accounts for drift along multiple modes. In this submission, we demonstrate a new approach and a general theory for modelling data with drift along multiple modes, for applications in multidimensional chromatography with multivariate detection. The proposed model captures over 99.9% of variance for a synthetic data set, presenting an extreme example of peak drift and co-elution across two modes of separation.

7.
Metabolites ; 12(12)2022 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-36557331

RÉSUMÉ

The essential oil (EO) from the leaves of Zanthoxylum caribaeum (syn. Chiloperone) (Rutaceae) was studied previously for its acaricidal, antimicrobial, antioxidant, and insecticidal properties. In prior studies, the most abundant compound class found in leaf oils from Brazil, Costa Rica, and Paraguay was terpenoids. Herein, essential oil from the leaves of Zanthoxylum caribaeum (prickly yellow, bois chandelle blanc (FWI), peñas Blancas (Costa Rica), and tembetary hu (Paraguay)) growing in Guadeloupe was analyzed with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS), and thirty molecules were identified. A comparison with previously published leaf EO compositions of the same species growing in Brazil, Costa Rica, and Paraguay revealed a number of molecules in common such as ß-myrcene, limonene, ß-caryophyllene, α-humulene, and spathulenol. Some molecules identified in Zanthoxylum caribaeum from Guadeloupe showed some antimetabolic effects on enzymes; the in-depth study of this plant and its essential oil with regard to metabolic diseases merits further exploration.

8.
J Chromatogr A ; 1682: 463499, 2022 Oct 25.
Article de Anglais | MEDLINE | ID: mdl-36126562

RÉSUMÉ

There are many challenges associated with analysing gas chromatography - mass spectrometry (GC-MS) data. Many of these challenges stem from the fact that electron ionization (EI) can make it difficult to recover molecular information due to the high degree of fragmentation with concomitant loss of molecular ion signal. With GC-MS data there are often many common fragment ions shared among closely-eluting peaks, necessitating sophisticated methods for analysis. Some of these methods are fully automated, but make some assumptions about the data which can introduce artifacts during the analysis. Chemometric methods such as Multivariate Curve Resolution (MCR), or Parallel Factor Analysis (PARAFAC/PARAFAC2) are particularly attractive, since they are flexible and make relatively few assumptions about the data - ideally resulting in fewer artifacts. These methods do require expert user intervention to determine the most relevant regions of interest and an appropriate number of components, k, for each region. Automated region of interest selection is needed to permit automated batch processing of chromatographic data with advanced signal deconvolution. Here, we propose a new method for automated, untargeted region of interest selection that accounts for the multivariate information present in GC-MS data to select regions of interest based on the ratio of the squared first, and second singular values from the Singular Value Decomposition (SVD) of a window that moves across the chromatogram. Assuming that the first singular value accounts largely for signal, and that the second singular value accounts largely for noise, it is possible to interpret the relationship between these two values as a probabilistic distribution of Fisher Ratios. The sensitivity of the algorithm was tested by investigating the concentration at which the algorithm can no longer pick out chromatographic regions known to contain signal. The algorithm achieved detection of features in a GC-MS chromatogram at concentrations below 10 pg on-column. The resultant probabilities can be interpreted as regions that contain features of interest.


Sujet(s)
Algorithmes , Analyse statistique factorielle , Chromatographie gazeuse-spectrométrie de masse/méthodes
9.
Environ Sci Technol ; 56(11): 7143-7152, 2022 06 07.
Article de Anglais | MEDLINE | ID: mdl-35522906

RÉSUMÉ

Microbial volatile organic compounds (MVOCs) play an essential role in many environmental fields, such as indoor air quality. Long-term exposure to odorous and toxic MVOCs can negatively affect the health of occupants. Recently, the involvement of surface reservoirs in indoor chemistry has been realized, which signifies the importance of the phase partitioning of volatile organic pollutants. However, reliable partition coefficients of many MVOCs are currently lacking. Equilibrium partition coefficients, such as Henry's law constant, H, are crucial for understanding the environmental behavior of chemicals. This study aims to experimentally determine the H values and their temperature dependence for key MVOCs under temperature relevant to the indoor environment. The H values were determined with the inert gas-stripping (IGS) method and variable phase ratio headspace (VPR-HS) technique. A two-dimensional partitioning model was applied to predict the indoor phase distribution of MVOCs and potential exposure pathways to the residences. The findings show that the MVOCs are likely distributed between the gas and weakly polar (e.g., organic-rich) reservoirs indoors. Temperature and the volume of reservoirs can sensitively affect indoor partitioning. Our results give a more comprehensive view of indoor chemical partitioning and exposure.


Sujet(s)
Pollution de l'air intérieur , Composés organiques volatils , Pollution de l'air intérieur/analyse , Température , Composés organiques volatils/composition chimique
10.
Metabolomics ; 18(4): 25, 2022 04 15.
Article de Anglais | MEDLINE | ID: mdl-35426515

RÉSUMÉ

INTRODUCTION: Feces is a highly complex matrix containing thousands of metabolites. It also contains live bacteria and enzymes, and does not have a static chemistry. Consequently, proper control of pre-analytical parameters is critical to minimize unwanted variations in the samples. However, no consensus currently exists on how fecal samples should be stored/processed prior to analysis. OBJECTIVE: The effects of sample handling conditions on fecal metabolite profiles and abundances were examined using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). METHODS: Solid-phase microextraction (SPME) and derivatization via trimethylsilylation (TMS) were employed as complementary techniques to evaluate fresh, frozen, and lyophilized fecal samples with expanded coverage of the fecal metabolome. The total number of detected peaks and the signal intensities were compared among the different handling conditions. RESULTS: Our analysis revealed that the metabolic profiles of fecal samples depend greatly on sample handling and processing conditions, which had a more pronounced effect on results obtained by SPME than by TMS derivatization. Overall, lyophilization resulted in a greater amount of total and class-specific metabolites, which may be attributed to cell lysis and/or membrane disintegration. CONCLUSIONS: A comprehensive comparison of the sample handling conditions provides a deeper understanding of the physicochemical changes that occur within the samples during freezing and lyophilization. Based on our results, snap-freezing at -80 °C would be preferred over lyophilization for handling samples in the field of fecal metabolomics as this imparts the least change from the fresh condition.


Sujet(s)
Métabolomique , Microextraction en phase solide , Fèces/composition chimique , Congélation , Chromatographie gazeuse-spectrométrie de masse/méthodes , Métabolomique/méthodes , Microextraction en phase solide/méthodes
11.
Phytochemistry ; 195: 113052, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-34968885

RÉSUMÉ

Dunaliella tertiolecta is a marine microalgae that has been studied extensively as a potential carbon-neutral biofuel source (Tang et al., 2011). Microalgae oil contains high quantities of energy-rich fatty acids and lipids, but is not yet commercially viable as an alternative fuel. Carefully optimised growth conditions, and more recently, algal-bacterial co-cultures have been explored as a way of improving the yield of D. tertiolecta microalgae oils. The relationship between the host microalgae and bacterial co-cultures is currently poorly understood. Here, a complete workflow is proposed to analyse the global metabolomic profile of co-cultured D. tertiolectra and Phaeobacter italicus R11, which will enable researchers to explore the chemical nature of this relationship in more detail. To the best of the authors' knowledge this study is one of the first of its kind, in which a pipeline for an entirely untargeted analysis of the algal metabolome is proposed using a practical sample preparation, introduction, and data analysis routine.


Sujet(s)
Microalgues , Techniques de coculture , Chromatographie gazeuse-spectrométrie de masse , Métabolome , Rhodobacteraceae
12.
Plant Sci ; 300: 110625, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-33180705

RÉSUMÉ

Infection of plants by pathogens can result in the upregulation of induced defenses; plants may be more or less susceptible to attack by insect herbivores following infection. We investigated the interaction between canola, Brassica napus L., plants infected with clubroot, Plasmodiophora brassicae Woronin, and a generalist herbivore the bertha armyworm (BAW) Mamestra configurata Walker using two canola cultivars that varied in susceptibility to clubroot disease. Volatile organic compounds released from experimental plants differed with infection and female adult BAW could discriminate between canola plants inoculated with P. brassicae and disease-free plants. Adult female moths preferentially laid eggs on disease-free plants of the susceptible cultivar to P. brassicae. Inoculation of resistant canola with P. brassicae, however, did not influence oviposition by female BAW. The fitness of BAW larvae was reduced when they were reared on susceptible canola inoculated with P. brassicae. Salicylic acid and its conjugates in susceptible canola plants were induced following P. brassicae inoculation as compared to disease-free susceptible plants. We conclude that suppression of BAW oviposition and offspring fitness may result in part from a change in the volatile profile of the plant as a result of inoculation and the induction of defenses in inoculated susceptible canola.


Sujet(s)
Brassica napus/parasitologie , Résistance à la maladie , Herbivorie , Lepidoptera/parasitologie , Maladies des plantes/parasitologie , Racines de plante/parasitologie , Plasmodiophorida/pathogénicité , Animaux , Produits agricoles/parasitologie , Protozooses
13.
Anal Bioanal Chem ; 409(28): 6699-6708, 2017 Nov.
Article de Anglais | MEDLINE | ID: mdl-28963623

RÉSUMÉ

Cluster resolution feature selection (CR-FS) is a hybrid feature selection algorithm which involves the evaluation of ranked variables via sequential backward elimination (SBE) and sequential forward selection (SFS). The implementation of CR-FS requires two main inputs, namely, start and stop number. The start number is the number of the highly ranked variables for the SBE while the stop number is the point at which the search for additional features during the SFS stage is halted. The setting of these critical parameters has always relied on trial and error which introduced subjectivity in the results obtained. The start and stop numbers are known to vary with each dataset. Drawing inspiration from overlapping coefficients, a method for comparing two probability density functions, empirical equations toward the estimation of start and stop number for a dataset were developed. All of the parameters in the empirical equations are obtained from the comparisons of the two probability density functions except the constant termed d. The equations were optimized using three real-world datasets. The optimum range of d was determined to be 0.48 to 0.57. An implementation of CR-FS using two new datasets demonstrated the validity of this approach. Partial least squares discriminant analysis (PLS-DA) model prediction accuracies increased from 90 and 96 to 100% for both datasets using start and stop numbers calculated with this approach. Additionally, there was a twofold increase in the explained variance captured in the first two principal components. Graphical abstract Here, we describe how to determine the start and stop numbers for an automated feature selection routine, ensuring that you get the best model you can for your data with minimal effort.

14.
Anal Bioanal Chem ; 409(7): 1905-1913, 2017 Mar.
Article de Anglais | MEDLINE | ID: mdl-28028595

RÉSUMÉ

Human axillary sweat is a poorly explored biofluid within the context of metabolomics when compared to other fluids such as blood and urine. In this paper, we explore the volatile organic compounds emitted from two different types of fabric samples (cotton and polyester) which had been worn repeatedly during exercise by participants. Headspace solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) were employed to profile the (semi)volatile compounds on the fabric. Principal component analysis models were applied to the data to aid in visualizing differences between types of fabrics, wash treatment, and the gender of the subject who had worn the fabric. Statistical tools included with commercial chromatography software (ChromaTOF) and a simple Fisher ratio threshold-based feature selection for model optimization are compared with a custom-written algorithm that uses cluster resolution as an objective function to maximize in a hybrid backward-elimination forward-selection approach for optimizing the chemometric models in an effort to identify some compounds that correlate to differences between fabric types. The custom algorithm is shown to generate better models than the simple Fisher ratio approach. Graphical Abstract A route from samples and questions to data and then answers.


Sujet(s)
Chromatographie gazeuse-spectrométrie de masse/méthodes , Sueur , Textiles , Volatilisation , Humains , Microextraction en phase solide
15.
Front Microbiol ; 7: 828, 2016.
Article de Anglais | MEDLINE | ID: mdl-27375567

RÉSUMÉ

Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

16.
Anal Chem ; 84(15): 6646-53, 2012 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-22813213

RÉSUMÉ

Comprehensive multidimensional separations (e.g., GC×GC, LC×LC, etc.) are increasingly popular tools for the analysis of complex samples, due to their many advantages, such as vastly increased peak capacity, and improvements in sensitivity. The most well-established of these techniques, GC×GC, has revolutionized analytical separations in fields as diverse as petroleum, environmental research, food and flavors, and metabolic profiling. Using multidimensional approaches, analytes can be quantified at levels substantially lower than those possible by one-dimensional techniques. However, it has also been shown that the modulation process introduces a new source of error to the measurement. In this work, we present the results of a study into the limits of quantification and detection (LOQ and LOD) in comprehensive multidimensional separations using GC×GC and the more popular "two-step" integration algorithm as an example. Simulation of chromatographic data permits precise control of relevant parameters of peak geometry and modulation phase. Results are expressed in terms of the dimensionless parameter of signal-to-noise ratio of the base peak (S/N(BP)) making them transportable to any result where quantification is performed using a two-step algorithm. Based on these results, the LOD is found to depend upon the modulation ratio used for the experiment and vary between a S/N(BP) of 10-17, while the LOQ depends on both the modulation ratio and the phase of the modulation for the peak and ranges from a S/N(BP) of 10 to 50, depending on the circumstances.

17.
Anal Chim Acta ; 724: 1-11, 2012 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-22483203

RÉSUMÉ

The characterization and authentication of fats and oils is a subject of great importance for market and health aspects. Identification and quantification of triacylglycerols in fats and oils can be excellent tools for detecting changes in their composition due to the mixtures of these products. Most of the triacylglycerol species present in either fats or oils could be analyzed and identified by chromatographic methods. However, the natural variability of these samples and the possible presence of adulterants require the application of chemometric pattern recognition methods to facilitate the interpretation of the obtained data. In view of the growing interest in this topic, this paper reviews the literature of the application of exploratory and unsupervised/supervised chemometric methods on chromatographic data, using triacylglycerol composition for the characterization and authentication of several foodstuffs such as olive oil, vegetable oils, animal fats, fish oils, milk and dairy products, cocoa and coffee.


Sujet(s)
Matières grasses/analyse , Analyse d'aliment/méthodes , Huiles/analyse , Triglycéride/analyse , Chromatographie en phase gazeuse , Chromatographie en phase liquide à haute performance , Chromatographie sur couche mince , Analyse discriminante , Spectrométrie de masse , Analyse en composantes principales
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...